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Oscar E. Lanford, Coordinator 

INTRODUCTION 

The Fall 1982 program of the Institute for Mathematics and its Applica- 
tions was devoted to Statistical Mechanics and Dynamical Systems and was 
coordinated by Oscar Lanford. The program began with a workshop which 
consisted of a number of lecture series to introduce the participants to the 
areas of statistical mechanics, dynamical systems and turbulence. 

Schematically, the organization of the lectures was as follows: In 
statistical mechanics, the lectures by Lanford and Gross were an elemen- 
tary introduction to the general principles of equilibrium thermodynamics 
and statistical mechanics including Gibbs ensembles, partition functions, 
thermodynamic limits, and Gibbs states for infinite systems. The general 
theory was further developed in the lectures of Newman on correlation 
inequalities and the Lee-Yang theorem and those of Faris on proofs of 
existence of phase transitions. Tracy described what is known about exactly 
soluble models, especially the two-dimensional Ising model, and Halley 
surveyed critical phenomena, scaling, and renormalization group theory 
from the physicist's point of view. 

In dynamical systems: Eckmann gave a general introduction to how 
dynamical systems ideas are applied in physics, and McGehee discussed 
concretely how ideas about exponential growth and decay of separation of 
nearby orbits (hyperbolicity) can be used to analyze the complicated 
motion produced by a particular equation. Joseph's lecture developed the 
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relation between the mathematics of the Navier-Stokes equation and the 
physics of turbulence, and Lundgren surveyed the phenomenology of 
turbulence from a physical and engineering point of view. The lectures by 
Aronson and Collet were elementary mathematical introductions to the 
theory of bifurcations and of iteration of one-dimensional maps respec- 
tively. Tresser surveyed the phenomena that have been discovered by 
numerical experiments on the simple models of H6non and Lorenz. On a 
more advanced level, Gallavotti discussed the Kolmogorov-Arnold-Moser 
theorem in the context of a general perturbation theory for Hamiltonian 
systems, and Conley presented a novel approach to the theory of hyper- 
bolic sets and structural stability. 

We present here abstracts of these lecture series together with reading 
lists in the hope that they will provide a useful guide to others who wish to 
learn these subjects. 

The Institute for Mathematics and its Applications is sponsored by the 
National Science Foundation. Additional support for Institute activities has 
come from the Air Force Office of Scientific Research, the Army Office of 
Research, Cray Research, Honeywell, Magnetic Controls and 3M Corpora- 
tion, as well as the following Participating Institutions of the Institute: 
Indiana University, Michigan State University, Northern Illinois Univer- 
sity, Northwestern University, Ohio State University, Purdue University, 
University of Chicago, University of Illinois (Urbana), University of Iowa, 
University of Michigan, University of Minnesota. 

I N S T A B I L I T Y  A N D  T R A N S I T I O N  T O  T U R B U L E N C E  

D. D. Joseph 

University of Minnesota 

The Navier-Stokes equations in a bounded domain have the special 
property that steady-state solutions are uniquely determined by the pre- 
scribed boundary conditions and prescribed forces when the Reynolds 
number is small. For larger values of the Reynolds number the solution, 
which is unique and stable when the Reynolds number is small, loses 
stability to a new motion with less symmetry. For instance, the new 
solution may break spatial symmetry, or time-dependent solutions may 
bifurcate from steady ones. In some problems a stable branch of the new 
solution bifurcates above the critical Reynolds number. Then the new 
motion can be a small amplitude perturbation of the old one. In the second 
case the new solution bifurcates below the critical Reynolds number and is 
usually unstable when the amplitude is small. This second (subcritical) case 
is sometimes associated with the direct transition to turbulence. 
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In the supercritical case it is possible to get repeated branching into 
higher-dimensional attractors. Landau and Hopf thought that these higher- 
dimensional attractors were tori for quasiperiodic attractors. They thought 
that this type of behavior might describe turbulence, but such solutions do 
not have a decaying autocorrelation and cannot describe turbulence. 

The ideas of Ruelle, Takens, and Lorenz about the transition to 
turbulence are in better agreement with observations. After a few bifurca- 
tions we can have attracting sets which are not muttiperiodic and which 
have continuous spectra, decaying autocorrelations, and other features of 
observed turbulence. The best agreement between theories of the Ruelle- 
Takens type and experiments is for small systems with widely separated 
eigenvalues whose dynamics are actually governed by a small number of 
modes. 

There is good evidence that the dynamics of the Navier-Stokes equa- 
tions are governed by a finite number of ODEs (Foias and Prodi, Foias and 
Teman, see Refs. 2 and 3) which arise from Galerkin methods after 
truncating. The problem is that the truncation number is evidently an 
increasing function of the Reynolds number and may be very large. 

R E F E R E N C E S  

1. D. D. Joseph, Stability of Fluid Motion, Vols. I & II (Springer, Berlin, 1976). 
2. H. Swinney and J. Gollub (eds.), Hydrodynamic Instabifities and the Transition to Turbu- 

lence. Springer Topics in Applied Physics (Springer, Berlin, 1981). 
3. G. I. Barenblatt, G. Iooss, and D. Joseph (eds.), Nonlinear Dynamics and Turbulence 

(Pitman, London, 1983). 

Other references can be found in these three. 

THE PHYSICS AND THEORY OF TURBULENCE 

Thomas Lundgren 

University o f  Minnesota 

The lecture was organized into four parts. The first part consisted of slides 
of a number of flow visualizations of fully developed turbulent flows. The 
occurrence of both spatial and temporal chaos at small scales was empha- 
sized. 

The second part was a discussion of the cascade of energy from large 
scales to small scales and the Kolmogorov theory of the energy spectrum. 

Thirdly, the use of an eddy viscosity, the classical practical solution to 
the problem of chaos at small scales, was described. The state of the art of 
eddy viscosity models for numerical simulation of turbulent flows was 
surveyed. 
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Finally, a model of the small-scale structure of high Reynolds number  
turbulent flows was briefly described. 

REFERENCES 

I. M. Van Dyke, An Album of Fluid Motions (Parabolic Press, Stanford, California, 1982). 
2. D. R. Chapman, Computational Aerodynamic Development and Outlook, AIA J. 17:1293 

(1979). 
3. W, C. Reynolds, Computation of Turbulent Flows, in Annu. Rev. FluM Mech. 6 (1974). 
4. T. S. Lundgren, Strained Spiral Vortex Model for Turbulent Fine Structure, Phys. Fluids, 

12:2193 (1982). 

D Y N A M I C A L  S Y S T E M S  A P P R O A C H  
T O  T U R B U L E N C E  

J.-P. Eckmann 

University o f  Geneva 

In this introductory lecture, the main motivations of dynamical systems 
theory are outlined and illustrated. One studies general properties of 
differential equations of the form ~:(t)= F(x(t)), where x ,F  E R n, or of 
maps xn+ 1 = G(xn), n E T/+. When such equations are dissipative, i.e., 
d ivF  < 0, IdetdGI < 1, the motion of a typical initial point approaches an 
attractor. In the absence of a classification of attractors, scenarios are 
outlined for one-parameter  families of maps and flows, leading from trivial 
attractors to more complicated ones. In particular the period-doubling 
scenario is emphasized. 

REFERENCE 

J.-P. Eckmann, Rev. Mod. Phys. 53:643-654 (1981). 

O N E - D I M E N S I O N A L  M A P P I N G S  

Pierre Collet 

Ecole  Poly technique  

This talk reviewed some of the recent results about iterations of unimodal 
maps of an interval. The first part  was devoted to topological questions. 
The theory of kneading sequences, a topological invariant, was described. 
Much information about the dynamics can be obtained from this invariant 
if the Schwarzian derivative ( f " ' / f ' )  - 3 / 2 ( f " / f ' )  2 is negative. For exam- 



Workshop on Statistical Mechanics, Dynamical Systems, and Turbulence 173 

ple, one can decide if there is a stable periodic orbit, if two maps with no 
stable periodic orbits are topologically conjugated, or if a given map is 
topologically equivalent to a piecewise linear one. Using the notions of * 
operation, and maximal sequences, one can derive some properties of the 
doubling operation f ~ f o f.  

The second part of this talk was devoted to the study of universal 
properties. Some numerical and experimental results were briefly described. 
The technique of renormalization group analysis was discussed. In this 
case, the renormalization transformation is composition followed by a 
scaling. One can explain universality for infinite sequences of period 
doubling bifurcations, the inverse cascade, and many other similar phe- 
nomena. 

In the last part of this talk, some results about invariant measures and 
ergodic theory were described. The definitions of sensitive dependence on 
initial conditions, and Lyapunov exponents were discussed and illustrated 
by some numerical examples. The abundance of stochastic behavior in 
one-parameter families, and some criteria for the existence of an invariant 
measure absolutely continuous with respect to the Lebesgue measure were 
briefly discussed. Finally, the results for unimodal maps were compared to 
those for everywhere expanding maps. 

A large part of the results described in these talks can be found in 
Ref. 1. 

R E F E R E N C E  

1. J.-P. Eckmann and P. Collet, Iterated Maps on the Interval as Dynamical Systems 
(Birkhauser, Boston, 1980). 

I N T R O D U C T I O N  T O  B I F U R C A T I O N  T H E O R Y  F O R  
M A P S  

D. G. Aronson 

University of Minnesota 

Let T~(x) : Ea X R-->~ d be a smooth function of (x,/~) and suppose that T O 
has a fixed point x = x0, i.e., that 

To( Xo) = x o 

We shall assume throughout that T~ is a diffeomorphism. It is well known 
that x o is stable if 

O( Dxro(Xo) ) C U -- ( z ~ C : [z I < 1}, 
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where a(A) denotes the spectrum of A. Roughly speaking, x 0 is stable 
means that Tf~(x)=- (To o Too . . . .  T o ) ( X ) ~ X  o as n--->oc for all x in 
some neighborhood of x 0. By the Implicit Function Theorem, there is a 
f u n c t i o n / ~  x(/~) defined for/~ near 0 such that x ( 0 ) =  x 0 and T~,(x(I~)) 
= x(/1) provided that D x To(xo) - I is invertible. The invertibility condition 
is satisfied if o ( D  x To(xo) ) c U. Now suppose there exists a/~* > 0 such that 
x (~ )  is defined on [0, #*), lim.,~.x(/~) =- x* exists and is in the domain of 
T~., and a(DxT~, . (x*))N 8 U ~ O .  Thus either x =  x(~)  cannot be ex- 
tended beyond /~ =/~* or else it can be extended but loses its stability. 
Bifurcation theory for maps provides a description of the behavior of the 
invariant set for T. for # near ~*. 

Case 1. Saddle-Node Bifurcation. Suppose that 

o(DxT.(x(l~)) ) -- {X.) LJ R, 

where R,  c U for t~ ~ [0, ~*], [~,,[ < 1 for ~ ~ [0, ~*), and ~, .  = 1, i.e., at 
/~ =/~* a single eigenvalue of DxT, (x ( l~ ) )  hits the unit circle at 1 and 
x = x(/~) cannot be extended beyond/~-- /~*.  Using the Center Manifold 
Theorem (a) we can reduce to a one-dimensional problem. Specifically, let e 
be a nonzero vector such that 

Dx T~,,( x* )e = e 

Then there exists a neighborhood V of (x*,/z*) in ~d •  R and a two- 
dimensional manifold M tangent to the plane of e and the /~-axis at 
(x*, #*) which is locally invariant and locally attractive. For each/~ near/z* 
let M~ denote the/~-section of M N V and consider the map G. = T.[ M, : 

• ~---> ~. Observe that 

G, . ( y* )  = y *  and DyG~, . (y*)= 1 

where y * =  x*[M~, .  Although we cannot solve G ~ ( y ) = y  for y as a 
function of/z in a neighborhood of/z*, we can solve for ~ as a function ofT  
provided that 

D~,G~.(y*) ~ 0 

Indeed the result is 

t~(Y) = ~* + � 8 9  + . . .  

provided that 

Here 

DTC,,,(y* ) r 0 (*) 

~.(y,) = n}cr(y*)/ n fi~,(y* ) 

Our assumptions on x = x(/~) assure us that/x"(y*) < O. Thus we get the 

following picture. 
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y* 

~/ f-Y=Y(F) stable fixed 
points (sinks) 

_ ~  x =/~(y) 
saddle node 

/ ~  /x* /.t 

y='~(p.) unstable fixed 
points (saddles) 

Fig. 1. 

Case 2. Flip Bifurcation, In the notation of Case 1, suppose that 
R . C  U for /x>O, [X~I<I for O < # < / t * ,  and ? t . . = - l .  In this case 
x = x(/t) extends beyond /~ =/x* but is not stable for /t >/x*. We shall 
show that, under appropriate conditions, new invariant objects are created 
at/~ =/x* which take up the stability lost by x(/x). Again we use the Center 
Manifold Theorem to reduce to a one-dimensional map y ~ G.(y) with 

G~.(y*) = y *  and DyG~.(y*) = - 1 

By a translation of coordinates we can assume that the fixed point y(p.) 
--= 0. Assume that 

D~,DyG~,,(O) ~ 0 

For example, if it is negative then Dy G~ (0) decreases as # increases through 
~*. Reparametrize so that 

DyG~(O) = - (1  +/~ - /z*)  '/2 

for J/~ -/z*] sufficiently small and consider the second iterate 

H~,(y) --(G~o G,)(y) 

The idea is to show that H~ has nonzero fixed points fo r / /> /z*  and that 
these points are not fixed points of G~. 

Some computation shows that DyH~.(O)= 1 but D2H~,.(O)= 0. Thus 
condition (*) is violated and we do not have a generic saddle-node 
bifurcation. Further computations using Taylor's Theorem and the Implicit 
Function Theorem show that for sufficiently small //>/~*, H~ has fixed 
points 

- 
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a < o ] 
t y%,) 

y (H-) = 0 ! y (H-) = 0 ! 
I Y-(H-) 

Normal flip bifurcation 

y(H-)= 0 i 

Subcritical 

a>O 
Y +(H.) 

) " "  l 
/x* 

L /  1 
y-(H-) 

flip bifurcation 
Fig. 2. 

provided that 

1 a =  . 2 ~ % . ( 0 ) 3 [ ~ ; G e . ( o ) l  } ~ 0  ~ { _ _  2 2 

The situation is shown schematically in Fig. 2. Moreover these points are 
stable (unstable) if a < 0 ( >  0) and satisfy 

Ge(y;) 
= Ye 

i.e., the y ~  are period 2 points for G e . 

Case 3. Hopf Bifurcation. Suppose that 

o(DxTAx(~))) = {Xe,Xe} U R e 

with R e C U and X e r X e for all/ ,  near/**. Suppose further that p , / <  1 for 
< I**, Ix~.l = l, and Ixel > 1 for I* >/**. Again x = x(#)  can be continued 

through I* =/** but the fixed point loses stability. The Center Manifold 
Theorem permits us to reduce to a problem for a two-dimensional map. 
Specifically, the center manifold M is tangent to the eigenspace of {a,., Xe. } 
and the /,-axis at (x*,/~*) and we work with the map G e ~ TelMe:R2 

R 2. Translate the coordinates so that the fixed points y( / , )~-x( /~)[  M, 
~ 0 .  

(I) If (d/d~)lXe. [ > 0 and )t2. 4= 1 for k = 1, 2, 3, or 4 there exists a 
/,-dependent change of variables on R e such that 

G~ : (r,O)--> ((1 + ~t - bt*)r + fl(/* - ~*) F3 -{- " ' ' '  

+ 0 ( / ~ -  ~ t*)+f2( /~- /**) r2+ . . .  ) 

where (r, q~) are polar coordinates on R 2. 
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/ 
f 

[ / , .  

f 
/ 

/ 

/ 

/x< /x* /z >/x* 
8 > 0  8 > 0  

Fig. 3. 

(II) Set 8 = fl(0). If 8 > 0 then, for sufficiently small ju >/~*, G, has 
a one-dimensional attracting set F, which is topologically a circle. If 8 < 0 
the invariant set F,  is not attracting. In either case, radius Fu~(/x -/~.)1/2. 

Note that F, is not an orbit: it is an invariant set. For some values of/~ 
there may be periodic orbits in I ' , .  

Applications. Consider the system of ordinary differential equations 

= g . ( x )  (**) 

with x,F~ E R d and F~.(x) smooth. Suppose that for /~=0  there is a 
periodic orbit x = @o(t) with period T, i.e., ~0(t + T) = ~0(t) for all t E R. 
Fix a point ~ on the orbit and take a small ( d -  1)-dimensional surface Z 
which is transverse to the orbit at 4. Define the map P . : Y  • E ~ Z  as 
follows: For each f E ~ and sufficiently small /x E N let P.~" = 4~.(t~; ~') 
where 4~.(, ; f )  denotes the solution of (**) through the point (f, 0) and 

t ~= inf( t  > 0:~5.( t ;~)  ~ ~} 

Fig. 4. 
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By standard results in the theory of ordinary differential equations t" < + 0e 
and P,  is well defined for all (f,/~) E V x ( - 8 ,  8), where V is a neighbor- 
hood of ~ in E. In view of the uniqueness of the solution of (**), P, is a 
diffeomorphism. P,  is called the Poincar6 map. 

Observe that ~ is a fixed point of Po. If 

1 ~Z o(D~Po~) 

then the Implicit Function Theorem implies the existence of a ~" = ~'(t~) 
such that f(0) = ( andP.~'(t~) = ~(t~). By the definition of P~ there exists a 
t E R + such that q~.(t; f(/~)) = ~'(t~) = q~.(0; ~'(/~)). Therefore the periodic 
orbit persists for/~ near 0. 

If 

o (D~ Po~) C U 

then the orbit x = ~o(t) is attracting. As/~ increases from 0 either ~" = ~'(/~) 
leaves the domain of P,  or else the spectrum hits a u. We consider briefly 
the latter case. In what follows we assume tacitly that all the appropriate 
generic conditions are  satisfied. 

(1) o(D~P~(tL )) = {)t~) U R~ with R~ c U. (a) Saddle-Node Bifurca- 
tion: I)t,l < 1 for /~ </~*, )t~, = 1. For /~ </~* there are a stable and an 
unstable orbit, as shown in Fig. 5. The orbits coincide for/~ =/~* and there 
are no periodic orbits for IZ > ~*. 

S ta b ~  ]) 

( ,/  L.-" 

Unstable orbi t  lu. < ]-L* 

Fig. 5. 

(b) Flip Bifurcation: ]X,I < 1 for /x </x*, X~. = - 1. Without loss of 
generality we can assume that f(/~) --=- 4. 
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x = r - ~ ~ N )  

. . . .  / 
( I . , " 1  

/.z < p.*  

Stable orbit with 
peri~ ~ 2 T F ' ~ f ~  _ _ 

; /  
I + . , Y . /  " . . /  

, ,  t I.-'~ Z.r 
Unstable / ~ ' ~ ~  
x = q~tz(t}" /~ >if* 

Fig. 6. 

(2) Hopf Bifurcation. a(D~P.~'(/~)) = {~,.X,} U R, with R, C U. 
Suppose {X,{ < 1 for / t  < #% I)~,.I = l, ]~,1 > 1 for # > tt*, and X~. 4= 1 for 
k = l. 2, 3, 4. Again change variables so that ~'(/~) ~ 4. 

i n v a r i a n t  to rus  
s x sl ~ 

S,'/ J) 
~ a r i a n t  circle 

- - - - - T  ~i r~ 
Fig. 7, 

Notes on Sources. The idea of reducing bifurcation problems in ~ 
(or infinite-dimensional spaces) to the lower-dimensional center manifold 
seems to be due to Ruelle and Takens. (6) A very elegant account of their 
methods can be found in Lanford's paper, (4) the book of Marsden and 
McCracken, (5) and (in somewhat less detail) Henry's monograph. (2) Refer- 
ence 5 also contains a detailed account of the Hopf Bifurcation Theorem 
for flows which we have not touched on here. Arnol'd's paper (1) gives an 
account of the Hopf Bifurcation Theorem for two-parameter families of 
diffeomorphisms. Alternative approaches to bifurcation theory which use 
the Liapunov-Schmidt method rather than the Center Manifold Theorem 
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can  be found  in the books  of Sat t inger  ~7) and  of Iooss  and  Joseph,  ~3) as 
well as in the p a p e r  of W e i n b e r g e r f i  ) 

R E F E R E N C E S  

1. V. I. Arnol'd, Loss of Stability of Self-Oscillations Close to Resonance and Versal 
Deformations of Equivarient Vector Fields, Funct. Anal. Appl. 11:1-10 (1970). 

2. Dan Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in 
Mathematics, Vol. 840 (Springer, Berlin, 1981). 

3. G. Iooss and D. D. Joseph, Elementary Stability and Bifurcation Theory (Springer, Berlin, 
1980). 

4. O. E. Lanford Ill, Bifurcation of Periodic Solutions into Invariant Tori: The Work of 
Ruelte and Takens, in Nonlinear Problems in the Physical Sciences and Biology, Springer 
Lecture Notes in Mathematics, Vol. 322 (Springer, Berlin, 1973). 

5. J. Marsden and M. McCracken, The Hopf Bifurcation and its Applications (Springer, Berlin, 
1976). 

6. D. Ruelle and F. Takens, On the Nature of Turbulence, Comm. Math. Phys. 20:167-192 
(1971); 23:343-344 (1971). 

7. D. Sattinger, Topics in Stability and Bifurcation Theory, Springer Lecture Notes in Mathe- 
matics, Vol. 309 (Springer, Berlin, 1972). 

8. H. F. Weinberger, The Stability of Solutions Bifurcating from Steady or Periodic Solutions, 
in Dynamical Systems, A. R. Bednarek and L. Cesari, eds. (Academic Press, New York, 
1977), pp. 349-366. 

QUALITATIVE THEORY OF HAMILTONIAN SYSTEMS 

Giovanni Gallavotti 

University o f  R o m e  

I in t roduce  the no t ion  of relat ive in tegrabi l i ty  for pairs  of H a m i l t o n i a n  

systems. 
The  first i l lus t ra t ion of this not ion  is the analysis  of the p rob lem of 

how to conjuga te  a small  pe r tu rba t ion  of a system which is in tegrable  by  
quadra tu res  with ano ther  system which is also in tegrable  by quadra tures .  I 
discuss through a few examples  why this p rob lem has a complex  answer  
and  why such an  answer  reflects only  par t ia l ly  some naive intui t ions.  The  
examples  are a d a p t e d  f rom the classical  works of Poincare  and  Birkhoff  

(References:  A). 
Af ter  s tat ing var ious  forms of the K A M  theorem I try to make  it clear  

that  it is a theorem of "d imens iona l  na tu re"  i l lustrat ing in detai l  the 
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essential points of its proof and deriving, at the same time, some smooth- 
ness properties of the family of invariant tori whose existence is proven by 
the theorem. Then I discuss a few aspects of the problem of finding 
conditions guaranteeing the integrability by quadratures of a perturbation 
of a nonresonant harmonic oscillator and I present a sufficient condition 
for the convergence of the Birkhoff series (References: B). 

Finally I discuss the theory of perturbations for systems which are not 
integrable by quadratures considering the case of the perturbations of the 
geodesic flow on a surface of constant negative curvature. I present some 
recent results. The first example is on the sufficiency of the existence of 
formal series solutions of the Hamilton-Jacobi equation (for the conjuga- 
tion of the perturbed system with the unperturbed one) for the actual 
solubility of the equation. The second example is a description of a 
complete set of invariants for the conjugation of perturbed and unper- 
turbed geodesic flows (References: C). 

A. GENERAL REFERENCES 

1. N. Kolmogorov, Dokl. Akad. Nauk. 98:527 (1954). 
2. J. Moser, Nach. Akad. Wiss. Gottingen IIa:l (1962). 
3. V. Arnold, Russ. Math. Surv. 18(5):9 (1963); 18(6):85 (t963). 
4. J. Poschel, Ueber differenzierbare Faserung invarianter Tori, 1981, preprint, ETH-Zurich., 

and Integrability of Hamiltonian systems on Cantor Sets, Comm. Pure Appl. Math. 
35:653-696 (1982). 

5. L. Chierchia and G. Gallavotti, Smooth Prime Integrals for Quasi integrable Hamiltonian 
Systems, Nuovo Cimento B67:277 (1982). 

6. H. Poincare, Les Methodes Nouvelles de la Mecanique Celeste (Gouthier-Villars, Paris, 
1892), Vol. I, Chap. V, p. 233. 

7. J. Moser, Stable and Random Motions in Dynamical Systems, Ann. Math. Studies, 
(Princeton Univ. Press, Princeton, New Jersey, 1973). 

8. D. Escande and F. Doveil, J. Stat. Phys. 26:257 (1981). 
9. D. Escande, Renormalization Approach to Nonintegrable Hamiltonians, Austin Work- 

shop, March 1981, preprint Ecole Politecnique, Lab. Phys. Milieux Ionises, Palasieu, 1982. 
10. H. Whitney, Trans. Am. Math. Soc. 36:63 (1934). 
11. H. Russman, Celestial Meeh. 14:33 (1976); Comm. Pure Appl. Math. 29:755 (1976); and 

Lecture Notes in Physics, Vol. 38, 1975, ed. J. Moser. 
12. G. Gallavotti, Perturbation Theory for Classical Hamiltonian Systems, to appear in 

Progress in Physics, J. Frolich, ed. (Birkhauser, Boston). 

B. REFERENCES FOR THE INTEGRABILITY (BY QUADRATURES) 
CRITERIA 

1. H. Poincare, Methods Nouvelles de la Mecanique Celeste (Gauthier-Villars, Paris, 1897), 
Vol. 1, Chap. V. 
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2. G. Gallavotti, Meccanica Elementare (Boringhieri, Torino, 1980), Chap. V, Sec. 5.10. 
3. J. Moser, Lectures on Hamiltonian Systems, Memoirs Am. Math. Soc., 81 (1973). 
4. S. Shenker and L. Kadanoff, J. Star. Phys. 27:631 (1982); S. Shenker, Scaling Behavior in 

a Map of a Circle onto Itself. Empirical Results, to appear in Physica D; M. Feigenbaum, 
L. Kadanoff, and S. Shenker, Quasiperiodicity in Dissipative Systems. A Renormalization 
Group Analysis, preprint, Los Alamos, 1982, to appear in Physica D; D. Rand, 
S. Ostlund, and E. Sethna, ITP (Santa Barbara) preprint. 

5. N. Kolmogorov, Dokl. Akad. Nauk 98:27 (1954); V. Arnold, Russ. Math. Surveys 18(5) 
(1963); and J. Moser, Nach. Akad. Wiss. Gi~ttingen lla:l (1962). 

6. J. Poschel, l~Iber differenzierbare Faserung invarianter Tori, ETA, Zurich, preprint (1981), 
and Integrability of Hamiltonian Systems on Cantor Sets, Comm. Pure Appl. Math. 
35:653-696 (1982). 

7. L. Chierchia and G. Gallavotti, Nuovo Cimento 67B:277 (1982). 
8. G. Gallavotti, Perturbation Theory of Classical Hamiltonian Systems, to appear in 

Progress in Physics, J. Fr6hlich, ed. (Birkhauser, Boston). 
9. P. Collet, H. Epstein, and G. Gallavotti, Perturbations of Geodesic Flows on Surfaces of 
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REMARKS ON CHAIN RECURRENCE AND 
HYPERBOLICITY 

C. Conley 

University of Wisconsin 

The representation of a flow on a compact space as the extension of a 
chain-recurrent flow by a strongly gradientlike flow was discussed first. 
Pursuing the gradientlike flow one finds things like the Morse theory of 
critical points of gradient flows or more generally, of isolated invariant sets. 
Following the chain-recurrent part, one is led, among several other things, 
to hyperbolic invariant sets. The basic dynamical results for hyperbolic sets 
were then discussed in terms of Wazewski's principle. The ideas of proofs 
of the structural stability, the shadowing lemma, and the stable manifold 
theorem were based on the construction of tubes of uniformly small 
diameter about orbits of the displacement equations. These tubes are 
"Wazewski sets" and their "nontriviality" together with the near linearity of 
the displacement equations gives the results. 

Finally, a way of abstracting the ideas of hyperbolic sets to arbitrary 
invariant sets of flows on compact metric spaces which have a global 
surface of section was outlined. The result is that tubes can always be 
constructed about bundles of orbits which are "held close together" by the 
flow. In this approach, the ideas of isolation and index, seen in the general 
Morse theory, appear again. 

A HYPERBOLIC INVARIANT SET FOR 
A FORCED PENDULUM 

Richard McGehee 

University of Minnesota 

The following differential equation describes a periodically forced pendu- 
lum: 

~/= -c~/~0 - (1 + 21u cos2t)sin0 (,) 

Note that, for # -- O, this equation models an unforced rigid pendulum with 
angular displacement 0 measured from the bottom of its swing. The 
parameter/x measures the amplitude of the periodic forcing term, while the 
parameter a is related to the damping. A theoretical physicist who regrets 
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that he was taken seriously has proposed equation (*) as a model for an 
acrobatic act. 

Consider a solution O(t)  which has only simple zeros, i.e., the pendu- 
lum has a nonzero angular velocity whenever it is at the bottom of its 
swing. Since these zeros are isolated, they can be numbered 

Define 

�9 . .  < t  i < t o < t l < t 2 " ' "  

_+1 if 0 ( t , )  > 0 
o.(0)- 

1 if 0 ( t . )  < 0 

Note that % is positive if the pendulum is moving counterclockwise at the 
nth time it hits the bottom of its swing, while % is negative if the pendulum 
is moving clockwise at that time. The sequence %(0) can be called the 
i t inerary  of the solution 0. One can prove the following theorem, which 
states that every itinerary is achieved. 

T h e o r e m .  Fix c~ so that Ic~] < 1/2~rsinhgr (~0.01378).  For suffi- 
ciently small fixed/~ 4: 0, the following statement holds. For each bi-infinite 
sequence ~-, = _+ 1, there is a solution 0 of (1) such that 

on(O ) = % for all n 

The key to the proof is to construct an appropriate hyperbolic invari- 
ant set. One writes equation (*) as a first-order system by introducing the 
variable ~ ---- t~. 

0 = w  
d~ = - s i n 0 - / x ( 2 c o s 2 t  sin0 + ao~) 

This system has a periodic orbit of period ~r at (0, ~0) -- (Tr, 0). For small/x, 
this orbit is hyperbolic with a two-dimensional stable manifold and a 
two-dimensional unstable manifold. For /x  = 0, these two manifolds coin- 
cide exactly. For small/x v a 0, the method of Mel'nikov (2> can be used to 
establish the existence of two nondegenerate homoclinic orbits, one passing 
near (0, ~0) = (0, 2), and the other passing near (0, ~0) = (0, - 2 ) .  The union 
of the two homoclinic orbits with the periodic orbit is a hyperbolic 
invariant set and hence has the shadowing property. (') The proof of the 
theorem thus is reduced to constructing pseudo-orbits corresponding to the 
specified sequence %. For % = + 1, we choose the pseudo-orbit to follow 
the homoclinic orbit near (0, 2), while, for % = - 1, we choose it to follow 
the homoclinic orbit near (0, - 2 ) .  The shadow of this pseudo-orbit is the 
orbit with the desired itinerary. 
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T H E  E X A M P L E S  O F  L O R E N Z  A N D  H I ~ N O N  

Charles Tresser 

Univers i ty  o f  N i c e  

The Lorenz equations read: 

2 =  - o x  + ay 

= r x  - y  - x z  

2 =  - bz  + x y  

(1) 

where o, b, r are parameters generally chosen in R + *. Although obtained as 
a result of cutting off Galerkin-type equations for thermal convection 
between planes, they do not describe the turbulence of a convective flow 
but constitute an interesting model "per se." One generally varies one 
parameter  in (1) and, varying r for o = 10, b = 8 /3  (the most studied case), 
one has the following succession of events: 

r < 1 : O is the unique critical point. It is stable and attracts all orbits. 
r - - -1:  Pitchfork bifurcation at O: two critical points O - + =  (+_[b 

( r -  1)] 1/2, + _ [ b ( r -  1) ] l / 2 , r -  1) branch off: this nongeneric bifurcation is 
due to the invariance of (1) under the symmetry (x, y, z)-+ ( - x ,  - y , z ) .  

1 < r < r h -  13.926: The two branches +-" Wlo c (O)  of the unstable 
manifold of O are attracted by the closest points O • (The stable manifold 
of O is like a barrier between the basins of O -+.) 

r = r  h + e (c small enough): There has been an abrupt  transition: 
The topological entropy of a typical first return map was 0 for r < r h and is 
log2 for r = r h + c: Furthermore + u Wlo c (O)  is now attracted by O -+ It  
seems that, except for a set of Lebesgue measure 0, all points still have 
orbits converging to O -  or O + 

r A ~ 26.06: The support of positive topological entropy gets positive 
Lebesgue measure. 

r A < r < ro :  The topological entropy is smaller than log2 on a 
typical first return map but one seemingly has a strange attractor, which is 
in concurrence with the sinks O -+ up to r = r H ~ 24.74. 
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r = r H ~ 24.74: O -+ undergo subcritical Hopf  bifurcations. The sym- 
metric one-parameter families of unstable cycles thereby generated can be 
numerically traced back to the pair of homoclinic orbits one observes for 
r = r h. [Note that for other values of ( o , b ) ,  r H ( o , b )  corresponds to su- 
percritical Hopf  bifurcations: then for some rs. n > rn,  the stable cycles 
thereby generated disappear in saddle node bifurcations when they encoun- 
ter the unstable cycles generated by the bifurcation at rh. ] 

r M < r < r D : One seemingly has an indecomposable strange attrac- 
tor, which attracts all orbits except for the stable manifold of the critical 
points, a set of Lebesgue measure zero. 

r > rD: A very complicated succession of events occurs, including 
cascades of period doublings, intermittency, observation of stable cycles, 
and horseshoe-type first return maps. 

It  seems that one can understand the dynamics for 1 < r < r D by the 
fact that (1) preserves some strong stable foliation: this would allow one to 
reduce the dynamics of some first return map to some one-dimensional 
map obtained by projection along the foliation: indeed modeling the 
one-dimensional maps allows one to construct other well-understood flows. 

It  seems that the complexity for r > r D can be understood in terms of 
the existence, for some rhet, of a heteroclinic connection between the saddle 
loci O-+. If such a heteroclinic connection does exist, typical first return 
maps present infinitely many  horseshoes. The complex behavior observed 
for r > rhe t and r o < r < rhe t corresponds to destructions and constructions 
of horseshoes. 

H6non proposed the mapping 

(x, y)  ---) (1 - a x  2 + y ,  b x )  (2) 

as a simple model for the formation of horseshoes. For many  sets (a, b), one 
observes numerically what seem to be strange attractors. These cannot be 
hyperbolic strange attractors, and one has no serious indications that what 
ones sees is not merely due to the impossibility for a computer to resolve 
the subtleties of such a map;  e.g., tiny stable cycles of low period (~30 )  
could be invisible with 16-digit computations. Although one knows that 
period-doubling cascades occur for (2) when varying a (b fixed), one does 
not know if the variation from zero to positive topological entropy is due to 
the cascade, as is proven for b = 0 where (2) reduces to a one-parameter 
family of one-dimensional endomorphisms. One only knows that for some 
(a, b), (2) has positive topological entropy and that, at least for b small 
enough, for some ( a , b ) ,  (2) possesses infinitely many  concurrent sinks. 
Recent investigations of other models for the formation of a horseshoe 
seem, however, to indicate that the occurrence of infinitely many sinks does 
not account for the structure of the seemingly strange attractors observed 
numerically. A clear understanding of the H6non mapping would certainly 
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be an important advance in dynamical systems theory, especially in regards 
to possible applications to the understanding of the transition to turbu- 
lence. 
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I N T R O D U C T I O N  T O  S T A T I S T I C A L  M E C H A N I C S  

Oscar E. Lanford 

Inst i tut  des Hautes  Etudes Scientif iques 

The main topics discussed were as follows: 
(1) A review of the thermodynamics of simple substances. The objec- 

tive of this part  of the lectures was to describe, in a mathematically precise 
but nonaxiomatic way, the basic physical principles of thermodynamics. 
The discussion emphasized the importance of convexity properties of the 
thermodynamic functions and the use of Legendre transforms. The way 
first-order phase transitions manifest themselves in the thermodynamic 
functions was described carefully. 

(2) Basic principles of statistical mechanics. The principal classical 
models for microscopic matter  were surveyed, including both continuous 
and lattice systems. (For lack of time, quantum statistical mechanics was 
not discussed.) The microcanonical, canonical, and grand-canonical en- 
sembles were introduced, and the prescriptions for computing thermody- 
namic functions as thermodynamic limits of logarithms of partition func- 
tions described. 

(3) Thermodynamic  limits of partition functions. The main ideas in 
the proof of the existence of the thermodynamic limit of the microcanoni- 
cal entropy were sketched, and it was shown how to obtain the thermody- 
namic limits of the canonical and grand-canonical partition functions as an 
easy corollary of this result. 
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S T A T E S  O F  I N F I N I T E  S Y S T E M S  

L. Gross 

Cornell University 

The laws of equilibrium thermodynamics (conservation of energy, increase 
of entropy, etc.) are idealized expressions of the directly observed behavior 
of large scale matter (chunks of about 1020 atoms or more). Statistical 
mechanics on the other hand attempts on the basis of a microscopic model 
of large scale matter to explain the general form of the laws of thermody- 
namics, as well as to predict the value of specific thermodynamic quantities 
(such as specific heat) for a specific substance. 

After a brief survey of the basic features of equilibrium thermodynam- 
ics, it was shown how these features can be recovered from statistical 
mechanics. The mechanism was carried out in the technically relatively 
simple context of a crystal. Because a thermodynamic system consists of a 
large number of particles, the customary mathematical idealization of this 
is an infinite system. For a microscopic model of an infinite crystal based 
on classical mechanics (rather than quantum mechanics) the state of the 
system is given by a measure on an infinite product space. The notions of 
entropy and free energy were defined and their relations explained in this 
context. 

These lectures were based in large part on the books of Ruelle (3'4) and 
Israel. (2) For a survey adhering close to the spirit of these lectures see Ref. 
1, which contains also further references. 
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CORRELATION INEQUALITIES AND THE 
LEE-YANG THEOREM 

C. M. Newman 

University of Arizona 

We consider the finite Ising models  {s i : i  E A c Z d) with probabi l i ty  
distr ibution d r ( s ) =  Z - % x p [ - f l U ( s ) ] I - [ p i ( d s i )  where - f l U ( s ) =  h~,s  i + 
~J+_/sis j with J i - j  > O. 

The G K S  inequalities, valid for even 0i's and  h ) 0, are stated and  
proved using Ginibre ' s  duplicate  var iable  methods.  They  can be used to 
prove  existence of t he rmodynamic  limits of correlat ions and  to compa re  
phase  transitions of different models.  They  can also show that  the magne-  
tization, m(h)  = [A[- l f (~ , s i )d~(s  ) is posit ive and  increasing for h ~> 0. 

The  G H S  inequality, valid for  certain even p/s  and  h/> 0, is stated and 
proved  by the E l l i s -Monroe  quadrupl ica te  variable method;  it implies that  
m is concave  for h/> 0 so that  discontinuities of m can occur  only at h = 0. 

The  F K G  inequalities, valid for all O/s, are stated and proved  by a 
me thod  using diffusion semigroups based  on work of Pitt. They  can be 
used to relate the asymptot ic  independence  of the s /s  to the decay proper-  
ties of < s i s j >  - <Si)(Sj> as [i - - j [  ~ oe (in the infinite vo lume system). 

The  L e e - Y a n g  theorem, valid for certain even O/s, states that  the zeros 
of Z in the complex  h-plane are all purely imaginary;  it implies that  m is 
analytic for R e h  ) 0 so that  phase  transitions can only occur  (for real h) at 
h = O. The  L i eb -Soka l  p roof  of the L e e - Y a n g  theory is presented.  
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O R D E R  AT L O W  T E M P E R A T U R E  

William G. Faris 

University of Arizona 

INTRODUCTION 

The purpose of these lectures is to explain how microscopic short-range 
forces can lead to macroscopic long-range order, even in the presence of 
randomness. The obvious mechanism is that the influence simply propa- 
gates from neighbor to neighbor through the macroscopic body. This is 
essentially correct, but there are a few subtle points to consider. 

The first is that there is a qualitative change as the temperature (a 
measure of randomness) varies continuously. At high temperatures there is 
no macroscopic order. It is only below a certain critical temperature that 
the ordered phases appear. 

The second point is that the situation depends strongly on the dimen- 
sion d of space. When d - -  1 the critical temperature is absolute zero and 
any amount of randomness destroys macroscopic order. The dimension of 
space must play a role in the analysis. 

1. CONTOURS 

The first method for attacking the problem is the use of contours. This 
dates back to a note of Peierls in 1936. The method gives a proof of the 
existence of multiple phases for the ferromagnetic Ising model. 

This model is an idealization of a magnet. Let A c Z d be a finite set of 
integer lattice points; think of this as a crystal. Let s : A ~  {_+ 1} be a 
function; this is supposed to be a microscopic configuration of the magnet. 
Then s(n) is interpreted as the value of the atomic spin at the site n in the 
crystal A. 

The energy of a configuration s is defined to be 

H(s) = �89 ~] Is(n) - s(m)[ 2 
In - m ]  = 1 

where the sum includes nearest-neighbor pairs {n,m} in the crystal. Note 
that each such pair that is aligned contributes zero to the energy; each 
misaligned pair contributes 2. Thus alignment produces low energy. 

The sum should also include nearest-neighbor pairs with only one 
member in the crystal A; we make the convention that s(n) = + 1 whenever 
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n is not in A. This is a boundary condition that tends to make positive spin 
configurations have somewhat lower energy. 

The probability of a configuration is given by the Gibbs prescription 
a s  

P ( i s } )  = Z - ' e x p [ - H ( s ) / T ]  

where T is the temperature parameter. The coefficient Z -  1 is simply a 
normalization constant designed to  make the probability of the set of all 
configurations come out to be one. 

The main result says that if the dimension d >1 2, then for every fixed n 
in Z a, 

lim supe ( s (n )  = - 1) = 0 
T$O A 

Thus the plus boundary conditions propagate their influence into the 
interior of the crystal, no matter how large it may be and how far n may be 
from the boundary. 

It follows in particular that for T sufficiently small 

p(s(n) = - 1 )  

for all A. This behavior persists in the thermodynamic limit A ~ Z a. Thus 
the bulk magnet is magnetized in the plus direction. On the other hand, if 
we had used minus boundary conditions we would have gotten the opposite 
behavior. This shows that there are two phases in the thermodynamic limit. 

It is important to stress that the result is false when the dimension 
d = 1. In this case an ordered state is a chain of aligned spins, and there are 
so many places the chain can break that there will surely be chains of spin 
up and chains of spin down in roughly equal proportion. 

There is no point repeating the proof o f  the theorem in this outline. 
There are many accounts. One that I found particularly readable is in 
lectures by Spitzer. (1) The basic idea is that any site with spin that is not 
aligned with the spins on the boundary is surrounded by a contour 
separating adjacent misaligned spins. Long contours are improbable at low 
temperature. But when d >/2 there are relatively few short contours sur- 
rounding the site. Thus the nonconforming spin has small probability. 

2. INFRARED BOUNDS 

There is another method of proving the existence of multiple phases at 
low temperatures, the method of infrared bounds. In one respect this is less 
powerful, in that the results are only for dimension d >/3. On the other 
hand, the method gives a picture of phase transitions that applies not only 
to Ising models but also the continuous spin models. The picture that 
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emerges is that d = 2 is a borderline case, but multiple phases are to be 
expected as a matter of course in higher dimensions. 

The original 1976 paper  on infrared bounds is by Fr6hlich, Simon, and 
Spencer. (2) This is still a very readable account. There is a more abstract 
and general treatment in a paper  by Fr6hlich, Israel, Lieb, and Simon, (3~ 
and this should be consulted by anyone who wishes to apply the method. 
Their version uses generating functions (Laplace transforms) in a system- 
atic way. The version I present uses only expectations of quadratic expres- 
sions and so is crude by contrast, but perhaps more elementary. 

The framework is now an infinite crystal Z d. A configuration s is a 
function from Z a to the reals. There is a probability measure on the space 
of configurations, and E is used to denote expectation. The measure is 
assumed to be translation invariant. 

The strategy is to choose one direction as a time direction and write n 
in Z a as (n', n) where n' is in Z d- 1 and n is in Z. We think of n as a time 
parameter.  (Of course this is still just  one of the space directions!) For each 
h:  Z d - 1 - ~  C with Yw[h(n')] 2 = 1 we define 

= h ( - ' ) s ( n ' ,  n) 

Then Y is a random function of time. 
The hypotheses of the theorem are the following. First, the spins must 

be highly aligned locally, in the sense that 

E ( l ~ ( n  + 1) - ~(n - 1)12 ) ~< 2 T  

where T is small relative to E(Is(n)12). Second, the random field must 
satisfy reflection positivity: 

, 

Finally, we must have d > 3. 
The conclusion of the theorem is that 

c > 0 

as n o  oe through even sites n in Z a. 
This statement of the theorem deserves some comment.  First, the 

alignment estimate and the reflection positivity are valid for the ferromag- 
netic Ising model independently of the dimension d of space. Thus the role 
of the dimension of space is isolated in the last hypothesis. 

Second, the alignment hypothesis is about separation by two time 
steps. This allows the axiomatic framework to encompass antiferromagnetic 
models, in which the spins tend to have alternating signs. 
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Third, the reflection positivity assumption looks mysterious, but its 
only use is to ensure a representation 

E(Y(0)  ~(n))  = ( f ,  R b,[f) 

where R = R* is a self-adjoint operator (acting in some Hilbert space) with 
norm bounded by one, and where f is a vector in the Hilbert space. If in 
some application it is known that Y(n) is a component  of a larger process 
that is Markov and time reversal invariant, then this representation may be 
read off directly. In any case the implication is not difficult to prove and 
may be found in a paper  by Klein. (4) 

Finally, the conclusion of the theorem refers to even sites, again only 
because of the possibility of antiferromagnetism. 

It  is worth mentioning why the conclusion implies the existence of 
multiple phases. There are two possibilities. If E(s(n))  :/: 0, then one applies 
symmetry to construct two measures where the two expectations have 
opposite sign. If E ( s ( n ) ) =  0, then the expression in the conclusion is 
E(s(O)s(n)) = Cov(s(0),s(n)), the covariance in the sense of probability 
theory. The theorem says C o v ( s ( O ) , s ( n ) ) ~ c  > 0 as n ~ o c  through even 
sites. Thus there are long-range correlations. The sequence s(n) of bounded 
functions has a subsequence that convergences weakly to some s(m).  It 
follows that Cov(s(0),s(oo)) = c > 0. In particular s (m)  is not a constant. 
Thus we may define new probability measures by taking conditional 
probabilities given the sign of s(m).  These then give two different phases 
and the original phase is exhibited as a random choice of one of these two 
phases. 

The proof uses Fourier analysis. The Fourier transform of the correla- 
tion function E(s(O)s(n)) on Z a is a measure on the torus T d. This measure 
satisfies a bound that implies that it can have a singular part  only at integer 
multiples of it. When d >/3 and the temperature T is sufficiently small, this 
component  must be present and dominates the asymptotic behavior. A 
contribution from zero frequency produces long-range alignment, while a 
contribution from frequency 7r produces a staggered alignment. The reason 
the dimension of space comes in is that the infrared bound implies that the 
nonsingular part  of the measure is integrable when d > 2. 
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(What follows is the introduction to the authors' article in Advances in 
Applied Mathematics 2:329-388 ( 1981) .) 

I N T R O D U C T I O N  

In this paper we will establish formulas for the correlations of the two- 
dimensional Ising model in the absence of a magnetic field and prove the 
convergence of the scaling limit from above and below the critical tempera- 
ture. 

The theoretical developments which lead up to our results begin with 
Onsager's calculation of the free energy for this model in a classic 1944 
paper. (52) Statistical mechanics in the finite-volume limit is expected to 
exhibit phase transitions through nonanalytic behavior in thermodynamic 
quantities; the Onsager formula for the free energy as a function of 
temperature was the first explicit example of such behavior. In a sequel to 
Onsager's paper, Kaufmann (34) simplified the analysis by emphasizing the 
role of the spin representations of the orthogonal group; Kaufman and 
Onsager (35) subsequently used this idea to study the short-range order. By 
1949 Onsager (53) knew the formula for the spontaneous magnetization, and 
Yang gave an independent derivation of this result in 1952. (74) 

In Ref. 28 Kac and Ward and later in Ref. 32 Kasteleyn pioneered a 
combinatorial attack on the Ising model. Montroll, Potts, and Ward (49) 
used this method to give formulas for the correlations as Pfaffians. The size 
of the Pfaffians in these formulas grows with the separation of the sites in 
the correlations and the asymptotic behavior at large separation (clustering) 
is far from evident. To go beyond the spontaneous magnetization in the 
analysis of the clustering of correlations, corrections to the Szeg6 formula 
were devised. This problem has a long history, and we mention in connec- 
tion with the Ising model the fundamental papers by Wu (72) and by 
Kadanoff  (29) in 1966, and by Cheng and Wu in 1967, (x3) and refer to 
reader to the book by McCoy and Wu (4~ for further details up to 1972. 
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In Fisher (18) and Kadanoff (3~ a notion of scaling for statistical sys- 
tems near a critical point was proposed. To understand the scaling limit for 
the Ising model it proved important to have formulas for the lattice 
correlations which manifested clustering explicitly. In 1973 the calculation 
of the two-point scaling function was announced in Refs 11 and 68 with 
details appearing in Ref. 73. Somewhat later several groups announced 
series expansion formulas for the scaled n-point functions. (4:~ McCoy 
e t a / .  (43~ employed Pfaffian techniques which evolved from the combinato- 
rial approach to the Ising model (see also Ref. 41). The work of Sato et 
al., (57) of Abraham, (2-5) and of Bariev (9,m) is more directly descended from 
the original algebraic approach of Onsager and Kaufman; an approach 
which, incidently, received further stimulus in the papers of Schultz et al. (65) 

and Kadanoff. (29) 
In the passage to the scaling limit, the correlations become singular at 

points of coincidence. For example, the critical exponent specifying this 
singularity in the two-point function is "known" from the large-scale 
behavior at the critical temperature (4~ (the two-point scaling function 
interpolates between the behavior at large separation at the critical temper- 
ature and the behavior at large separation away from the critical tempera- 
ture). However, the precise asymptotics at short distance has never been 
directly computed from the known series expansions. This is not too 
surprising since these series were developed specifically to exhibit the 
behavior at large separation in the scaled distance. In Ref. 73 Wu, McCoy, 
Tracy, and Barouch found the precise short-distance asymptotics for the 
scaled two-point function by first showing that this function was expressible 
in terms of a Painlev6 transcendent. Part of this analysis was put on a 
firmer footing in a later paper. (42~ 

The deeper reason for the occurrence of the Painlev6 transcendent was 
first understood by Sato, Miwa, and Jimbo (SMJ). (5a-63) They were aware 
that Painlev6 transcendents occur naturally in the integration of Schlesin- 
ger's equations (64) for monodromy-preserving deformations of linear differ- 
ential equations (oddly, the extensive work of Garnier (~9) on this connec- 
tion is not mentioned in the principal English reference, Ince(25)). In a 
remarkable series of papers, they developed new techniques in the theory of 
Clifford algebras, (59~ generalized the monodromy idea to a partial differen- 
tial equation (the Euclidean Dirac equation), (6~) showed that the scaled 
n-point functions were the coefficients in the local expansion of a basis of 
multivalued solutions to the Euclidean Dirac equation, (62~ and finally used 
this to demonstrate that the scaled n-point functions satisfy a nonlinear 
Pfaffian system of differential equations (every derivative is specified). (62'63) 
In the case of the two-point function, the Pfaffian system is integrable in 
terms of the particular Painlev6 transcendent appearing in Refs. 42 and 73. 
A review of this work can be found in Ref. 26. 



Workshop on Statistical Mechanics, Dynamical Systems, and Turbulence 197 

In the work we have described on the Ising model the level of 
mathematical rigor fluctuates considerably. In much of the work on the 
correlations, the subtleties of the boundary conditions for the infinite 
volume limit are side stepped. In all the work we are aware of there are 
"holes" of positive measure in the known regions of convergence for the 
series representations of the scaled n-point functions. In particular the 
important SMJ (62) analysis of the scaled correlations introduced (multival- 
ued) continuum order-disorder correlations through complicated infinite 
series expansions whose known region of convergence has large gaps. The 
coefficients in the local expansions of these order-disorder correlations are 
identified as n-point functions again only at the level of the series expan- 
sions. One of the principal motivations for our paper is to lay the founda- 
tion for a treatment of the SMJ analysis in which the multivalued order-  
disorder correlations and the n-point functions appear as well-controlled 
limits of simply defined lattice analogs, and in which the local expansions 
are computed rigorously. We shall present this analysis in a forthcoming 
paper. Another important consideration for our work was to establish some 
of the expected probabilistic and field theoretic properties for the scaled 
n-point functions. Our contribution to these matters is presented in the final 
section of this paper. 

In the first three sections of this paper, we prove (regularized) determi- 
nant formulas for the infinite-volume correlations (Theorems 2.1 and 3.2). 
The transfer matrix formalism in Section 1 permits us to express the 
correlations (with "plus" boundary conditions) for a semi-infinite box as 
the Fock expectation of a product in a finite-dimensional Clifford algebra. 
We apply results from Ref. 56 to give determinant formulas in this 
finite-dimensional situation and then prove the convergence of these deter- 
minants to the infinite-volume counterparts directly. Our proof is valid only 
below the critical temperature. Above the critical temperature we use a 
variant of Kramers-Wannier  duality to relate the correlations with "open" 
boundary conditions to correlations of disorder variables (see Kadanoff  
and Ceva (31)) with "plus" boundary conditions below the critical tempera- 
ture. This effectively reduces the convergence proof to the previous case 
and incidently identifies a natural disorder variable on the lattice. Once the 
determinant formulas are established, the infinite-dimensional results in 
Ref. 56 then give simple "abstract" characterizations of the infinite-volume 
correlations as Fock expectations (Theorem 2.2 and 3.3). 

The use of "plus" boundary conditions permits us to use the conver- 
gence results (39) which show that the correlations obtained in the two-step 
infinite-volume limit natural for the transfer matrix approach are the same 
as the correlations which result from letting the sides of a square box tend 
simultaneously to infinity. This coincidence of limits establishes dihedral 
group invariance and that the correlations are the expectations of products 
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of random fields, (14,15) neither of which properties is manifest in our explicit 
formulas. 

In the fourth section we prove convergence of the scaling limit from 
above and below the critical temperature. Our formulas are not valid 
everywhere but the exceptional sets are measure zero. The resulting n-point 
scaling functions (below Tc) are given by formulas det2(1 + G), where G is 
a Schmidt class operator. 

In Section 5 we use Gaussian domination (51) and some integrability 
estimates for the two-point function to conclude that the correlations are 
locally integrable functions. We then use the Bochner-Minlos  theorem to 
demonstrate that we have computed the n-point functions of a generalized 
random field. (16'2~ The Osterwalder-Schrader axioms (54~ are all direct 
consequences of the convergence of the scaling limit with the exception of 
rotational invariance. We do not prove rotational invariance; however, we 
note that McCoy  and Wu have an unpublished demonstration of this 
property. Of particular interest in this last section are new formulas for the 
lattice two-point functions which we use to establish dominated conver- 
gence. 
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sota 

Basic phenomenology of phase transitions including definitions of critical 
exponents, scaling and definitions and results for n-d models were re- 
viewed. The standard renormalization group 'recipe' was outlined. The 
exactly solvable one dimensional Ising and hierarchical models were briefly 
discussed. Expansions in ~ where the lattice dimension is 4 - c  were 
mentioned but not discussed. 
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